Find x if 2x + 5 = 19
Solve for the variable.
Solution
2x = 14 ⟹ x = 7.
Explore hand-picked problems across topics. Filter, shuffle, mark solved, and reveal tidy solutions — all wrapped in silky gradients and scroll magic.
Solve for the variable.
2x = 14 ⟹ x = 7.
Solve using factorization or quadratic formula.
(x−2)(x−3)=0 ⟹ x=2 or x=3.
Find ordered pair (x, y).
From 4x + y = 17 ⇒ y = 17−4x. Substitute: 3x − 2(17−4x) = 11 ⇒ 3x − 34 + 8x = 11 ⇒ 11x = 45 ⇒ x = 45/11. Then y = 17 − 4(45/11) = (187−180)/11 = 7/11.
Give your answer in interval notation.
5−2x < 3x+10 ⇒ −5 < 5x ⇒ x > −1. Interval: (−1, ∞).
Express 27 as 3k.
27 = 3³ ⇒ x+1 = 3 ⇒ x = 2.
Solve the linear non-homogeneous recurrence.
Let bn=an+½ ⇒ bn+1=3bn, b₁=2.5 ⇒ bn=2.5·3^{n−1}. Hence an=2.5·3^{n−1}−½.
Use A = ½bh.
A = ½·10·7 = 35.
In a right triangle, r = (a + b − c)/2.
c=10. r=(6+8−10)/2=2.
Opposite angles in a cyclic quad sum to 180°.
∠C = 180° − ∠A = 110°.
Use √[(Δx)² + (Δy)²].
Δx=8, Δy=−6 ⇒ d=√(64+36)=√100=10.
Use prime factors or Euclid’s algorithm.
84=2²·3·7, 60=2²·3·5 ⇒ gcd=2²·3=12.
Reduce base modulo 5.
7≡2 (mod 5) ⇒ 2¹⁰⁰ ≡ 0? No. Since 2⁴≡1 ⇒ 100 multiple of 4 ⇒ ≡1.
Simplify first.
Divide by 7 ⇒ 2x+3y=1 ⇒ x=1−3t, y=−1+2t for t∈ℤ.
Use divisibility by 9 and simple search logic.
Let 9n have digit sum 9 ⇒ 9n ≡ 0 (mod 9) always; first is 9, digit sum 9 ⇒ n=1.
Differentiate term by term.
9x² − 7.
Apply chain rule.
cos(x²)·2x.
u-substitution recommended.
Let u=x² ⇒ du=2x dx ⇒ ∫ e^{u} du = e^{x²} + C.
Use Taylor or l’Hôpital.
≈ (1 − (1 − x²/2))/x² → 1/2.
Use binomial formula.
C(3,2)/2³ = 3/8.
Use inclusion–exclusion.
P=13/52 + 4/52 − 1/52 = 16/52 = 4/13.
Geometric distribution with p=1/6.
E = 1/p = 6.
Stars and bars.
C(5+3−1, 3−1) = C(7,2) = 21.
State yes/no and justify.
Yes. Their truth tables coincide.
Name the principle used.
Pigeonhole principle with 12 months.
Consider cases for A.
If A is knight ⇒ B knave. But B says “same,” which would be false ⇒ consistent. So A knight, B knave.
Name the law.
De Morgan’s law: x∉A∩B ⇔ (x∉A)∨(x∉B).